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a b s t r a c t

Ecological security has become a major issue under fast urbanization in China. As the first two cities in
this country, Shenzhen and Dongguan issued the ordinance of Eco-designated Line of Control (ELC) to
“wire” ecologically important areas for strict protection in 2005 and 2009 respectively. Early warning
systems (EWS) are a useful tool for assisting the implementation ELC. In this study, a multi-model
approach is proposed for the early warning of illegal development by integrating cellular automata
(CA) and artificial neural networks (ANN). The objective is to prevent the ecological risks or catastrophe
caused by such development at an early stage. The integrated model is calibrated by using the empirical
information from both remote sensing and handheld GPS (global positioning systems). The MAR indi-
cator which is the ratio of missing alarms to all the warnings is proposed for better assessment of the
model performance. It is found that the fast urban development has caused significant threats to natural-
area protection in the study area. The integration of CA, ANN and GPS provides a powerful tool for
describing and predicting illegal development which is in highly non-linear and fragmented forms. The
comparison shows that this multi-model approach has much better performances than the single-model
approach for the early warning. Compared with the single models of CA and ANN, this integrated multi-
model can improve the value of MAR by 65.48% and 5.17% respectively.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Urban expansion has become a global phenomenon which is at
the cost of losing ecological and agricultural land. Under the pres-
sure of protecting natural heritage, more than 12,700 protected
areas (e.g. parks and wildlife refuges) have been established around
the world, accounting for 8.8% of the Earth’s land surface (Liu et al.,
2001;McDonald et al., 2001). Inmany developed counties, there is a
long history of conserving protected areas (Dompka, 1996). How-
ever, it is rather a challenge task for China to protect its treasured
land resources under the pressure of rapid urban expansion since
the economic reform in 1978. Many fast growing cities in China
have to encroach on ecological or agricultural land for keeping the
economy growing. In China, a city will expand by 3 per cent on
average if its economy, measured by gross domestic product, grows
by 10 per cent according to statistical analysis (Deng et al., 2008).

Chinese economic development is accompanied by many envi-
ronmental and ecological problems, such as the degradation of
rural, agrarian, and ecological systems (Forman, 2008; Yeh and Li,
1999). Ecological security has become a major concern for this
fast growing country. Actually, the concept of ecological security
was first proposed by the governments of the United States for
tackling environmental problems during urban growth (Ezeonu
and Ezeonu, 2000). Ecological security may mean the safety from
injury, harm, or danger without damage to the natural systems. As a
tool to implement the concept of ecological security, early warning
systems (EWS) are used to recognize the “early warning” signs of
environmental or ecological degradation. EWS is to facilitate the
systematic collection of information which can shed light on the
causes and dynamics of natural calamities. Many EWS actually
involve the techniques of realtime multiple-source data collection,
data transmission, evaluation and analysis for timely dissemination
of early warning (Quansah et al., 2010). Advances in remote sensing
and GPS techniques have resulted in more reliable, high frequency
and automated collection of critical ecological and environmental
status.

Besides data collection, evaluation and analysis methods are
also important for the construction of EWS. EWS should have the
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capability of modeling the dynamics of biological and environ-
mental elements which are involved for the assessment of
ecological security (Tegler et al., 2001; Barlindhaug et al., 2007;
Hockey and Curtis, 2009; Li et al., 2010). There are quite diverse
techniques for identification, description, evaluation and prediction
of ecological security. Li et al. (2010) proposed an index system for
landscape ecological security (LES) using three dimensions, six
factors, and three weights. There are few studies on the develop-
ment of early warning mechanisms for preventing illegal devel-
opment in fast growing regions. New tools are needed for
effectively predicting and assessing the potential impacts of illegal
development within protected natural areas. Gong et al. (2009) first
proposed a method to assess ecological security by using cellular
automata (CA).

Illegal development which usually occurs during the period of
rapid urban growth refers to the construction without permits and
authorized blueprints. Government reports and academic studies
have revealed that illegal development is extensive and persistent
in China since the economic reform in 1978. There were already
1.84 million cases or 1730 km2 of illegal development in the mid-
1980s, and another 1 million cases or 2000 km2 of such develop-
ment in the 1990s (Tang and Chung, 2002). This situation persisted
in the 2000s because of huge land demand. A total of 13, 000 cases
or 160 km2 of illegal development was further identified for the
period of October 2005eOctober 2006 according to the 7th na-
tional land use investigation by using remote sensing techniques
(Wang and Li, 2008). Their studies indicated that the portion of
illegal development amounted to 51% (cases) and 22% (area) of the
total development. Moreover, therewere eight administrative cities
with more than 80% of their total amount of development identi-
fied as illegal. This type of unprecedented growth has resulted in
serious urban sprawl in some large cities, such as Beijing (Wong
and Tang, 2005) and Guangzhou (Wu and Yeh, 1999).

Various attempts have been made in China to protect its
shrinking agricultural land resources during urbanization. These
attempts include the implementation of development containment
strategies to limit city size (both in terms of population and the
built-up area), the restriction of new development in important
agricultural areas, the promotion of high-density development, and
the designation of greenbelts (Zhao, 2011). Particularly, strict
legislation can be imposed to contain urban development within a
reasonable boundary. Shenzhen and Dongguan are the first two
cities to promulgate the ordinance of Eco-designated Line of Con-
trol (ELC) which is to “wire” important ecological land for legal
protection. Shenzhen is the first administrative city to adopt the act
of ecological land protection in China. On 1 November 2005, the
first law in China for protecting important ecological land from
urban development was issued by Act 145 of Shenzhen’s Govern-
ment. In this Act, a total of 974 km2 (about 49.9% of its total
administrative land area) has been delineated as the protected land.
However, it is found that illegal development is quite common
within ELC. Li (2007) reported that the average approved amount of
development was about 20 km2 annually, but the actual amount of
development was as high as 48 km2. Moreover, only 43% of the
existing urban land (724 km2) in 2007 had been legally approved by
the government agencies.

It should be too late to obtain the information of illegal devel-
opment from field investigations or remote sensing monitoring for
the management purpose. Instead, early warning of possible illegal
development is appealing for preventing the ecological risks or
catastrophe before they could take place. However, the early
warning involves complex factors and uncertainties which are
difficult to represent and handle by using top-down mathematical
equations. This problem can be partially solved by using bottom-up
simulation methods, such as cellular automata and agent-based
models. These models are just implemented based on some local

Fig. 1. Early Warning System (EWS) for predicting illegal development by integrating cellular automata (CA) and neural networks (ANN).
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interaction rules (Li et al., 2011). Recent years have witnessed the
fast development of various bottom-up simulation models for
predicting land use change trajectories and exploring possible
development options. Particularly, a family of cellular automata
(CA) have been developed, including SLEUTH (Clarke et al., 1997),
GeoSOS (Li et al., 2011), and CLUE-S (Verburg et al., 2002). Although
there is a growing trend of using agent-basedmodels, CA have been
considered to be convenient and well defined in terms of model
structures and model calibration (Li et al., 2011).

Few studies have been carried out to use these models for early
warning of ecological and environmental risks caused by illegal
land development. This paper will present a multi-model approach
by integrating CA and artificial neural networks (ANN) for
improving the predictability of EWS. CAwill be used to simulate the
illegal development for future years. ANN are also incorporated to
improve the simulation performance because the development is
an extremely nonlinear process. Moreover, handheld GPS with
high-precision will be utilized to provide empirical information to
train and validate the EWS. This integrated model is expected to
provide a useful tool for researchers and policy-makers to under-
stand and predict illegal development under different future-
oriented environmental policies. This model will also yield timely
guidance in decidingmitigation actions against illegal development
for fast growing regions.

2. Early warning of illegal development by integrating
cellular automata and neural networks

As a special type of land use conversion, illegal land develop-
ment is subjected to a series of uncertainties and characterized by a
diversity of scales and processes. This may explain why illegal
development is usually in fragmented or leap-frog patterns (Zhao
et al., 2009). In this study, a multi-model approach is proposed to
capture the characteristics of complex land development for
implementing the early warning system (EWS). This multi-model
approach is developed in three-folds: 1) simulating urban expan-
sion by using a process model, a logistic cellular automaton (Lo-
gistic-CA); 2) capturing highly non-linear feature of illegal
development by using a neutral network (ANN); and 3) integrating
these two models for improving the performances of EWS.

The integration of CA and ANN is to provide the complementary
information which is crucial for the early warning of illegal devel-
opment (Fig. 1). A logistic-CA is directly used to simulate the pat-
terns and processes of urban development. ANN is also developed
to improve the accuracy of warning illegal development. Since the
ANN model is only calibrated by using one year of high-resolution
data, it cannot directly simulate illegal development for future
years. Instead, a logistic-CA which is a process model will be uti-
lized to obtain the total amounts of predicted illegal development
for various future years. These amounts of illegal development are
then treated as the constraints of ANN so that this model can
predict the patterns of illegal development for these years. The
combination of these two models is to improve the accuracy of
identifying potential illegal development for the EWS. The
following section will describe the details of the proposed meth-
odology (Fig. 1).

2.1. Logistic cellular automaton

For simulating urban dynamics and land use changes, CA need
to be parameterized with statistical or artificial intelligent tech-
niques by using empirical information (Li et al., 2011). The
parameterization of CA based on logistic regression has proven to
be effective for quantifying the potential interactions related to
land use dynamics (Wu, 2002; Li et al., 2008; Lin et al., 2011). Before

the parameterization, it is essential to identify the driving factors
which determine land use dynamics for constructing CA. Explan-
atory variables for land use dynamics usually include the accessi-
bility to the built and natural amenity features, and the site and
neighborhood properties (Conway and Wellen, 2011). The accessi-
bility can be quantified by the proximities to various attraction
centers, such as transport, roads, railways, urban centers and
commercial centers (Wu and Webster, 1998; Li and Yeh, 2002; Lin
et al., 2011).

The logistic-CA is based on the estimation of the conversion
probability from a series of spatial variables (Wu, 2002; Li et al.,
2008):

ptij ¼
exp

�
ztij
�

1þ exp
�
ztij
� ¼ 1

1þ exp
�
� ztij

� (1)

where ptij is the conversion probability at time t for cell ij;
ztij ¼ a0 þ a1x1 þ a2x2 þ/þ amxm þ/þ aMxM , a0 is the con-
stant, xm is a spatial (physical) variable representing a driving force
for urban development, and am is the parameter (weight) of vari-
able xm.

The above equation only addresses the global interactionswhich
are in a function of various proximity variables for land use con-
version. Actually, local (neighborhood) interactions between
different land use types compose the important part of transition
rules of CA. Local interactions are related to site and neighborhood
properties. Moreover, some geographical constraints (e.g. topog-
raphy, protected ecological land and planning schemes) should be
included to address environmental and ecological conditions. By
considering all these factors, the development probability is further
revised as follows (Li et al., 2008, 2011):

ptij ¼
�
1þ ð � ln gÞa� 1

1þ exp
�
� ztij

�� f
�
Ut
ij

�
� con

�
stij
�

(2)

where g is a stochastic factor ranging from 0 to 1, a is a parameter to
control the stochastic degree, f ðUt

ijÞ is the development intensity in
the neighborhood of Uij, and conðstijÞ is the combined constraint
score ranging from 0 to 1.

At each iteration of simulation, ptij is compared with a threshold
value to determine if a non-urbanized cell will be converted into an
urbanized cell:

Stþ1
ij ¼

(
Converted; ptij � g

Non Converted; ptij < g
(3)

where g is a threshold value.
The threshold (g) is determined according to the actual land

demand which is usually obtained from observation data or an
exogenous growth model. For example, this value can be estimated
in suchway that the total number of converted cells will be equal to
the actual one observed from classified remote sensing data (Li and
Yeh, 2002). The implementation of logistic-CA is simple as it has
been widely used in many studies (Wu, 2002; Li et al., 2008).
Actually, it is available in the free package of GeoSOS (Li et al., 2011).

2.2. Artificial neural networks

Artificial neural networks (ANN) are developed by simulating
human’s learning and recalling abilities. ANN have been used to
solve many practical problems, such as pattern classification,
complexity and dimension reduction, and temporal prediction
(Grossberg, 1988; Chen and Billings, 1992). These models have also
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been applied to the analysis and modeling of various geographical
problems (Openshaw, 1998). Studies indicate that ANN can well
deal with complex nonlinear relationship between the driving
variables and land use dynamics (Li and Yeh, 2002). It is found that
ANN even have higher overall accuracy and kappa statistics than
other models (e.g. logistic regression) for modeling land use
changes (Lin et al., 2011). This is the main reason that ANN are
incorporated in this EWS for predicting illegal development.

For modeling a complex non-linear mapping problem, neural
networks usually contain three layers of neurons: input, hidden
and output layers. In the input layer, each neuron which is associ-
ated with an input variable (e.g. the independent variable for land
use conversion). The output layer yields the conversion probability
of land use changes (Li and Yeh, 2002).

ANN are usually trained based on a back-propagation learning
mechanism (Foody, 1996). This mechanism iteratively minimizes
an error function over the network (calculated) outputs and desired
(known) outputs. After the optimized weights have been obtained,
this parameterized three-layer network can be used to predict the
conversion probability for simulating illegal development.

2.3. Early warning of illegal development based on a multi-model
approach

The early warning system (EWS) is formulated by using a
number of techniques, such as remote sensing, cellular automata,
neural networks, and GPS. Actually, this system consists of a
number of functions, such as remote sensing monitoring, handheld
GPS checking, estimation of development probabilities, assessment
for warning, and prediction of perceived potential alarms (Fig. 1). In
order to reduce the possibility of missing warnings, we use a multi-
model approach to identify the potential sites of illegal develop-
ment for future years. All these sites identified by either of these
two models will be treated as warnings. This is based on the “OR”
operator for combining CA and ANN simulation results. Such
operator may create a fair amount of over-warnings. However, it is
expected that this approach can reduce the risk of missing
warnings.

As an important part of the EWS, handheld GPS are used to
confirm, delineate and label the warnings on the ground. The field
measurement is based on a Continuous Operational Reference
System (CORS) which uses local reference stations to provide up to
centimeter-level accuracy. The high-precision GPS will obtain
detailed geometric information (e.g. shape and area) for each
confirmed site of illegal development. The ground-true information
is important for training and validating EWS.

The assessment of EWS is usually carried out by using the FAR
indicator which is the ratio of false alarms, or unverified warnings,
to all the warnings issued (Barnes et al., 2007):

FAR ¼ Wfalse=
�
Wtrue þWfalse

�
(4)

where Wtrue and Wfalse are the area of true (confirmed) and false
warnings respectively based on field investigations.

The perception of warning accuracy is important for imple-
menting early warning systems. A warning may turn out to be
wrong because of the complexity of natural phenomena. In prac-
tice, a larger area of warnings should be identified because of a
safety reason (Barnes et al., 2007). There is not the so-called “cry-
wolf effect”. The ‘do no harm’ principle will favor over-warnings
since a fair amount of false-warnings can be removed by further
field investigation. For example, the public still needs the fore-
casting or has the confidence in the forecasting if 70% of tornado
warnings turned out to be false.

In this study, the MAR indicator which is the ratio of missing-
warnings to all the warnings is thus proposed for the assessment:

MAR ¼ Wmissing=
�
Wtrue þWmissing

�
(5)

where Wtrue and Wmissing are the area of true (confirmed) and
missing warnings respectively based on field investigations.

3. Model implementation and results

3.1. The study area

Dongguan is a fast growing city in the Pearl River Delta, China.
Like many cities in this region, the administrative area of Dongguan
consists of the urban districts andmany rural towns. Actually, it has
four urban districts and 29 towns with a total area of 2465 km2.
Situated just about 100 km north of Hong Kong, this administrative
city is attractive for manufacturing industry because of its strategic
geographical location. It used to be an agricultural county before
1986, but now has been converted to one of the largest electronic
manufacturing centers in the world after about three decades of
rapid industrialization (Li et al., 2011).

The fast urbanization and industrialization in this region have
caused a lot of land use problems, such as soil erosion and pollution,
encroachment on agricultural and ecological land, and traffic
congestion (Yeh and Li, 1999; Seto et al., 2002). According to the
official data, the urbanized area of this city was only 99 km2 in 1988,
but increased to 684 km2 in 2001 and 1211 km2 in 2010. A further
worsening problem of land resources is that a large percent of
remaining land belongs to sensitive or unavailable areas, such as
water, hilly areas, and important agricultural or ecological land. The
diminishing land stock raises a major question on how to reserve
enough land for satisfying future social, economic and ecological
demands. In 2009, Dongguan promulgated the ordinance of Eco-
designated Line of Control (ELC) (Act 112) for ecological land pro-
tection. This ordinance requires a total of 1103 km2, or about 44.7%
of its total land area, to be strictly protected for ecological uses.
However, the urban land use already claimed 49.1% of the total land
area in 2010. The implementation of ECL will nevertheless facewith
severe challenges because of continuing economic growth and ur-
ban expansion.

3.2. Building the CA model

The 2006, 2010 TM images, which are with a spatial resolution
of 30 m, were used to provide the empirical information about land
use dynamics (the dependent variable) for calibrating CA. Radio-
metric and geometric corrections were carried out before classi-
fying these images. The classification was based on a series of
techniques, such as object-based classification, manual editing, and
intensive field labeling with GPS. The image segmentation pro-
duced objects by aggregating similar pixels. Samples (objects) were
then manually collected for each land use category (e.g. urban area,
farm land, forest, water, fishpond, and bare soil). The average ac-
curacies of the classification for these images are about 83e85%
according to our field checking (Chen et al., 2011).

Land use changes are partially dependent on a series of spatial
variables (the independent variables), such as various distances to
attraction centers. These variables are often used to estimate the
probabilities of land use changes during urban and land use
simulation (Wu and Webster, 1998; Li et al., 2008). In this study, a
number of spatial variables are defined as follows: 1) distance to
the city center (DisCity), 2) distance to the town centers (DisTown),
3) distance to the railways (DisRail), 4) distance to the expressways
(DisExpress), and 5) distance to the roads (DisRoad). It is rather
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Fig. 2. Various spatial variables for CA and ANN models: (a) distance to the city center (DisCity), (b) distance to the town centers (DisTown), (c) distance to the railways (DisRail), (d)
distance to the expressways (DisExpress), (e) distance to the roads (DisRoad), (f) distance to the business centers (DisComm), (g) Distance to facilities (DisFacili), (h) Distance to
Urban Areas (DisUrban), (i) Population, (j) DEM, (k) MNDWI, and (l) NDVI.
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convenient to create these variables by using common GIS
(Geographical information systems) functions (Fig. 2).

The logistic-CA was built according to these dependent and in-
dependent variables. Logistic regressionwas implemented by using
the weka-3-6-6 software (Hall et al., 2009). The overlay of classified
2006 and 2010 TM images reveals that there are 374,811 pixels and
1,458,528 pixels of converted (urbanized) and non-converted land
respectively. For each land use type, 50,000 pixels were randomly
drawn for the logistic regression (Wu, 2002; Li et al., 2008). The
features for the regression include the labeled land use types (the
dependent variable) and the above spatial variables (the indepen-
dent variables). These samples were equally divided into two
groups, the training data and the testing data. The total accuracies
are 63.12% and 62.47% for the training data and the testing data
respectively (Table 1). This regression yielded the parameters of the
combined variable (ztij) as described in Equation (2):

ztij ¼ 1:402� 0:520xCityProper � 0:840xTownCentre

� 0:232xRailways � 0:718xExpressways � 3:033xRoads (6)

where xCityCentre, xTownCentre, xRailways, xExpressways, and xRoads repre-
sent the distance to the city center, the distance to the town centers,
the distance to the railways, the distance to the expressways, and
the distance to the roads respectively.

3.3. Building the ANN model

The SPOT images in 2010 were classified to provide the empir-
ical information of illegal development for training the ANNmodel.
Classified illegal development was verified by intensive labor work,
such as field checking with differential GPS. Although much more
labor costs are required to classify these SPOT images, it is worth-
while to use these high-resolution images for producing satisfac-
tory classification of land use types. Illegal development was
obtained by the overlay of these classified images with the planning
maps from the Planning Department of Dongguan.

Illegal development is usually in leap-frog or fragmented pat-
terns, characterized by nonlinear and complex behaviors. These
patterns are more complex than those of general urban develop-
ment. Therefore, more spatial variables should be incorporated in
the prediction model to capture such highly nonlinear features.
Two groups of spatial variables, proximity variables and site
properties, are used as the inputs to this ANN model. Selection of
these variables is based on previous studies (Verburg et al., 2006;
White et al., 1997; Li and Yeh, 2002; Wu, 2002). The first group of
variables (proximity variables) is the same as those used for CA (Li
and Yeh, 2002). The second group of variables includes some
additional proximity variables and site properties. These variables
are: 1) distance to the business centers (DisComm), 2) distance to
facilities (DisFacili), 3) distance to urban areas (DisUrban), 3) pop-
ulation, 4) DEM, 5) MNDWI, and 6) NDVI (Fig. 2).

The site properties were obtained by using remote sensing or
GIS data. For example, the Normalized Difference Vegetation Index
(NDVI) which allows for better identification of non-urbanized
(developed) pixels is calculated according to the following equa-
tion (Tucker, 1979):

NDVI ¼ TM4� TM3
TM4þ TM3

(7)

where TM 3 and TM4 are the band 3 and 4 of Landsat TM data
respectively.

The modified Normalized Difference Water Index (MNDWI) is
used to identify the water pixels which should be excluded from
development sites (Li et al., 2011). MNDWI is calculated as follows
(Xu, 2006):

MNDWI ¼ TM2� TM5
TM2þ TM5

(8)

where TM 2 and TM5 are the band 2 and 5 of Landsat TM data
respectively.

There are 19,513 pixels and 1,019,073 pixels of converted (illegal
land) and non-converted land respectively. For each land use type,
10,000 pixels were randomly drawn for building the ANN model.
These samples were equally divided into two groups, the training
data and the testing data. The BP neural network was adopted by
using the weka-3-6-6 software (Hall et al., 2009). The neural
network consists of 12 neurons (representing the independent
variables mentioned before) in the input layers, 7 neurons in the
hidden layer, 2 neurons (representing the probabilities of converted
or non-converted for the prediction) in the output layers. The
number of the neurons in the hidden layer is decided by the default
setting of the weka-3-6-6 software. This number is equal to the
average of the number of input neurons and the number of output
neurons ((12 þ 2)/2 ¼ 7). The weights of ANN are automatically
determined according to the backpropagation algorithmwhich is to
minimize the prediction error. Studies indicate that such “black
box” approach has no physicalmeanings of internal parameters and
physical relations between the parameters and output (Li and Gu,
2003). In our experiments, the total accuracies of ANN are 87.72%
and 86.55% respectively by using the training data and testing data
for predicting the illegal development (Table 2).

3.4. Early warning of illegal development based on a multi-model
approach

These twomodels will not agreewell with each other because of
using different model structures and training schemes. If integrated
properly, however, they can be complementary for improving the
performance of the early warning. A convenient way to combine
them is based on the simple “union” (“or”) operation. The inte-
gration requires that these models are constrained by the same
amount of land consumption for future years.

Table 1
Accuracy of the logistic regression for the training and testing data.

Converted Non-converted Accuracy

1. Training data
Converted 17,905 7095 71.62%
Non-converted 11,347 13,653 54.61%
Total 29,252 20,748 63.12%

2. Testing data
Converted 17,733 7267 70.93%
Non-converted 11,497 13,503 54.01%
Total 29,230 20,770 62.47%

Table 2
Accuracy of the neural network for the training and testing data.

Converted Non-converted Accuracy

3. Training data
Converted 4228 772 84.56%
Non-converted 456 4554 90.90%
Total 4684 5326 87.72%

4. Testing data
Converted 4209 791 84.18%
Non-converted 554 4446 88.92%
Total 4763 5237 86.55%
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First, the proposed CA was used to simulate the land develop-
ment in 2015, 2020 and 2025 respectively. The predicted illegal
development sites were identified by overlaying the simulated re-
sults with the Eco-designated Line of Control (ELC) and the Plan-
ning Red Line (PRL, or authorized blueprints). Those development
sites are considered as illegal if they are within ECL and outside PRL
according to the definitions of planning departments.

Then ANN was also used to provide alternative prediction of
illegal development for future years. As illegal development sites
are usually in highly non-linear or fragmented patterns, more
spatial variables should be included as the explanatory variables to
improve the predictability of EWS. In this ANN model, additional
spatial variables are used in the input neurons for improving the
prediction of illegal development. As the output layer only yields

the probability of illegal development, a threshold value is used to
determine if a site will be converted as illegal development. In this
study, this threshold is decided in such a way that the total amount
of illegal development by ANN will be equal to the predicted by CA
for a future year. It is because ANN which is not a process model
should be linked to CA for obtaining such process information.

In this study, the above CA, ANN and CA þ ANN models were
implemented based on the spatial resolution of 30 m because of
using TM data. The ground truth data were acquired by using high-
precision GPS. The GPS based on the Continuous Operational
Reference System (CORS) provides up to centimeter-level accuracy
for validating the warning results. Table 3 shows the examples of
ground truth data of illegal development measured by the high-
precision GPS. Each site of illegal development records the geo-
metric and attribute information in terms of its location, size, and
land use type. For example, Fig. 3 displays two examples of warning
sites which are confirmed as illegal development by the field
investigation. They are illegal residential plots and manufactory
buildings which have not been approved by the planning depart-
ment. The total area of these two illegal sites is 6735.2 m2 and
7384.5 m2 respectively, recorded by the high-precision GPS. The
incorporation of GPS allows accurate geometric properties of illegal
development to be delineated on the ground, and thus provides
important information for carrying out legal actions against these
activities. The accuracies of CA, ANN and CA þ ANN (the integrated
model) for the warning of illegal development were estimated by
using the 2010 ground truth data (Table 4).

Figs. 4e6 show the predicted warnings of illegal development in
a zoom-in area for 2010 by using CA, ANN and CA þ ANN models
respectively. These figures indicate that CA þ ANN can effectively
reduce the possibility of missing warnings. Fig. 4 clearly demon-
strates that the CA model alone will produce a lot of missing

Table 3
Examples of ground truth data of illegal development measured by the high-
precision GPS.

Patch no. Location of the centroid Land use Area (103 � m2)

1348 113�45028.0200E Residential use 0.616
22�56007.5700N

1367 113�43001.8800E Residential use 2.870
22�58012.4400N

1369 113�40042.4200E Commercial use 1.154
22�58032.6000N

1377 113�45003.0700E Commercial use 30.796
22�56011.8600N

1392 113�40050.6300E Industrial use 4.414
22�58042.0400N

1394 113�41045.0200E Commercial use 13.643
22�58051.0000N

1407 113�41004.4700E Industrial use 7.385
22�59002.7600N

Fig. 3. Two examples of warning sites which are confirmed as illegal development according to the CORS GPS.
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warnings (blue color in the figure) (in web version). Fig. 5 indicates
that the ANN model has better results than the CA for reducing the
amount of missing warnings. However, the combined CA þ ANN
model can have better performances of reducing missing warnings
than the single CA and ANN models (Fig. 6).

The proposed integrated model seems to perform much poorly
with regard to the value of FAR. Actually, all of these models may be
quite disappointed in terms of FAR because their FAR values are
quite high (Table 4). As mentioned before, the use of FARmay result
in missing warnings which can cause severe ecological and envi-
ronmental risks or catastrophe in most situations. The analysis
indicates that the proposed model performs quite well in terms of
MAR. Compared with CA and ANN, this integrated model can in-
crease the value of MAR by 65.48% and 5.17% respectively (Table 4).
Therefore, this integrated model is more effective for warning po-
tential illegal development at an early stage.

After the calibration, the proposed model was used to predict
the warnings of illegal development for the years of 2015, 2020 and
2025 respectively. Fig. 7 shows the predicted warnings of illegal
development in 2015 for Dongguan by using CA þ ANN. It is
interesting to find that illegal development is usually located near
the edges of ECL (Fig. 8). For example, 86.9% of the illegal devel-
opment in 2010 was identified in the buffer of 600 m from the edge
of ECL. Stronger law enforcement actions should be conducted to
protect these areas from potential development based on the
warning results.

4. Conclusion

Rapid urban development has caused the significant loss of
agricultural and ecological land in many cities in China. In 2005,
Shenzhen implemented the first ordinance of Eco-designated Line
of Control (ELC) which is known as “wired” ecological control line.
The study area, Dongguan, is the second city to implement such
policy to protect its shrinking land resources. According to gov-
ernment reports, however, such policy is faced with severe chal-
lenges because of proliferated illegal development in these fast
growing regions. The successful implementation of ELC requires the
strict prohibition of land development within eco-designated areas,
supported by intensive monitoring efforts.

It is useful to develop an early warning system (EWS) to predict
the threats to the regional ecological security by illegal develop-
ment. A single model may not perform well for predicting illegal
development which is in highly non-linear or fragmented patterns.

Table 4
Accuracies of CA, ANN and CA þ ANN for the warning of illegal development based
on the ground true data in 2010.

Confirmed (true) False Missing FAR MAR

In hectare

CA 327.7 5234.4 1428.5 94.11% 81.34%
ANN 1376.46 5884.47 366.48 81.04% 21.03%
CA þ ANN 1466.55 9555.84 276.39 86.69% 15.86%
FAR ¼ Wfalse/(Wtrue þ Wfalse)
MAR ¼ Wmissing/(Wtrue þ Wmissing)

Fig. 4. Warnings of illegal development in 2010 for a zoom-in area by using CA.
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This study has demonstrated that a multi-model approach can help
to increase the accuracy for the early warning of illegal develop-
ment. In this study, cellular automata (CA) and artificial neural
networks (ANN) are integrated to estimate the risks posed to nat-
ural area protection by rapid urban development.

The warnings of illegal development are obtained more accu-
rately by combined use of CA and ANN models. Any illegal devel-
opment sites predicted from either of these two models for future
years will be considered as the warnings. Empirical data about
illegal development are obtained from temporal remote sensing
data, such as TM and SPOT satellite images. The GPS which is based
on Continuous Operational Reference System (CORS) provides a
powerful tool to verify the warning results with detailed and ac-
curate geometric information. The warnings from the proposed
model are used to identify the target areas for detailed field
investigation. This significantly reduces labor costs and allows the
ground measurement with high-precision GPS is feasible.

Equipped with the simulation models (CA and ANN) and the
GPS tool, the proposed EWS is effective for understanding the
process of illegal development at site-specific or sub-regional
scales. The development of EWS can ensure better ecological con-
trol and allow for the evaluation of ecological viability and benefits.
By issuing warnings of illegal development in advance, government
officers can assign more monitoring actions in the potential places
to prevent such infringement. This integrated system may help to
find out alternative management scenarios, assess their impacts,
and monitor the plan which is at an implemented phase. This EWS

is also useful for identifying the driving forces which are respon-
sible for illegal development, and the sequences of various devel-
opment strategies.

In this study, the traditional concept about accuracy may not be
applied to this proposed system. It is because the ultimate goal is
not just to predict illegal development accurately, but rather to
implement protection measures and legislation in the target areas.
This needs to identify the potential sites which may have a chance
to develop illegally. Compared with missing alarms, over-alarms or
false-alarms of illegal development may not be a serious problem
since ground checking can be carried out to verify or correct the
prediction errors if they are not too much.

The experiments have indicated that the proposed integrated
model can effectively reduce the possibility of missing warnings.
Missing alarms should be a major concern of the early warning
because uncaught sites of illegal development could cause severe
ecological risks or damages. MAR (the ratio of missing alarms to all
the warnings) is a much better indicator for the assessment of the
performance of EWS than FAR (the ratio of false alarms, or
unverified warnings to all the warnings). Compared with CA and
ANN, this proposed model can increase the value ofMAR by 65.48%
and 5.17% respectively. Therefore, it is worthwhile to combine CA
and ANN for producing satisfactory results of early warning.

The proposed method will be in favor for a certain amount of
over-alarms or false-alarms. It is obvious that intensive labor work
is required for the verification of alarms. The future studies need to
find out what is the acceptable amount of over-alarms or false-

Fig. 5. Warnings of illegal development in 2010 for a zoom-in area by using ANN.
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Fig. 7. Warnings of illegal development in 2015 for Dongguan by using CA þ ANN.

Fig. 6. Warnings of illegal development in 2010 for a zoom-in area by using CA þ ANN.
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alarms with regard to labor costs. Model parameters or thresholds
can then be defined for improving the efficiency of EWS. Moreover,
existing CA and other land use models are basically stationary
because of using fixed transition rules. Studies have shown that
such assumption can capture complex nonlinear dynamic behavior
(Couclelis, 1988; Batty and Xie, 1994; White et al., 1997). However,
future studies should focus on the use of updated data or assimi-
lating techniques to improve the prediction capability of these
models for far future years. It is also useful to see if the proposed
approach can be generalized for the use in other cites/regions.
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Fig. 8. The relationships between the illegal development in 2010 and the buffer
distance from the edge of ECL.
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